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Objective: The Penn Computerized Neurocognitive Battery (CNB) was designed to measure performance
accuracy and speed on specific neurobehavioral domains using tests that were previously validated with
functional neuroimaging. The goal of the present study was to evaluate the neuropsychological theory
used to construct the CNB by confirming the factor structure of the tests composing it. Method: In a large
community sample (N � 9,138; age range 8–21), we performed a correlated-traits confirmatory factor
analysis (CFA) and multiple exploratory factor analyses (EFAs) on the 12 CNB measures of Efficiency
(which combine Accuracy and Speed). We then performed EFAs of the Accuracy and Speed measures
separately. Finally, we performed a confirmatory bifactor analysis of the Efficiency scores. All analyses
were performed with Mplus using maximum likelihood estimation. Results: Results strongly support the
a priori theory used to construct the CNB, showing that tests designed to measure executive, episodic
memory, complex cognition, and social cognition aggregate their loadings within these domains. When
Accuracy and Speed were analyzed separately, Accuracy produced 3 reliable factors: executive and
complex cognition, episodic memory, and social cognition, while speed produced 2 factors: tests that
require fast responses and those where each item requires deliberation. The statistical “Fit” of almost all
models described above was acceptable (usually excellent). Conclusions: Based on the analysis from
these large-scale data, the CNB offers an effective means for measuring the integrity of intended
neurocognitive domains in about 1 hour of testing and is thus suitable for large-scale clinical and genomic
studies.

Keywords: computerized neurocognitive battery, psychometrics, factor analysis, Philadelphia
Neurodevelopmental Cohort

The recent incorporation of genomics into clinical neurosci-
ence has generated an unprecedented need for behavioral as-
sessment of domains that can be linked to brain systems and
serve as “biomarkers” of psychopathology (Insel & Cuthbert,

2009). The scale of such studies requires efficient computerized
testing of a broad range of abilities using tests that have been
validated with functional neuroimaging. Such “neurobehavioral
probes” (Gur, Erwin & Gur, 1992) have been assembled into a
computerized neurocognitive battery (CNB) in which these
tasks have been adapted to assure adequate psychometric prop-
erties, such as reliability and validity (Gur et al., 2001, 2010)
and its linkage to brain systems (Roalf, Ruparel et al., 2013).
The CNB has been applied in large-scale genomic studies
(Aliyu et al., 2006; Greenwood et al., 2007; Gur et al., 2007;
Almasy et al., 2008), treatment research (Gur et al., 2001;
Grant, Huh, Perivoliotis, Stolar, & Beck, 2012), and the mili-
tary (Thomas et al., 2013). Although its individual tests’ scores
have been largely reliable (and their inferences valid), the
overall latent structure of the battery has not been sufficiently
evaluated. Using confirmatory and exploratory factor analysis,
we aimed to examine the factor structure of the CNB, which is
of paramount importance in justifying how the instrument is
scored and interpreted.

The CNB currently comprises 14 tests grouped into five do-
mains of neurobehavioral function. These broad domains were
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selected because they represent well-established brain systems,
and each test in the battery was used in functional neuroimaging
studies to probe aspects of these domains (Roalf, Ruparel et al.,
2013). There are three tests in each of four domains measuring
Executive Control, Episodic Memory, Complex Cognition, and
Social Cognition as summarized in Table 1. A fifth domain (Sen-
sorimotor Speed) was measured by two tests, but the current
analysis examined accuracy and these tests only provide speed
measures and were therefore not included. Here we examined the
factorial structure of the CNB in a sample of over 9,000 individ-
uals age 8 to 21 who were administered the CNB as part of their
participation in the Philadelphia Neurodevelopmental Cohort
(PNC; Gur et al., 2012, 2013).

Method

Sample

The PNC sample included children (age 8–21) recruited through
an NIMH-funded Grand Opportunity (GO) study characterizing
clinical and neurobehavioral phenotypes in a genotyped prospec-
tively accrued community cohort. All study participants were
previously consented for genomic studies when they presented for
pediatric services within the Children’s Hospital of Philadelphia
(CHOP) health care network. At that time they provided a blood
sample for genetic studies, authorized access to Electronic Medical
Records (EMRs) and gave written informed consent/assent to be
recontacted for future studies. Of the 50,540 genotyped subjects,
18,344 met criteria and were randomly selected, with stratification
for age, sex, and ethnicity.

The sample included ambulatory children in stable health, pro-
ficient in English, physically and cognitively capable of partici-
pating in an interview and performing the computerized neurocog-
nitive testing. Youths with disorders that impaired motility or
cognition (e.g., significant paresis or palsy, intellectual disability)
were excluded. Notably, participants were not recruited from psy-
chiatric clinics and the sample is not enriched for individuals who
seek psychiatric help. A total of 9,138 enrolled in the study
between 11/2009–10/2011 and were included in this analysis.
Participants provided informed consent/assent after receiving a

complete description of the study and the Institutional Review
Boards at Penn and CHOP approved the protocol.

CNB Tests and Administration

The tests included in the CNB have been described in detail in
Gur et al. (2010, 2012). The tests are briefly described below by
domain:

Executive. The Penn Conditional Exclusion Test (PCET;
Kurtz, Wexler, & Bell, 2004) measures the executive functions of
abstraction and mental flexibility (ABF), critical for effective
problem solving. It assesses the ability to derive principles and
concepts from feedback, as well as the ability to detect and adjust
to changing rules. The PCET uses the “odd man out” paradigm, in
which participants must determine which object in a group does
not belong. The exclusion rule can be based on the shape or
configuration of the objects (e.g., a square would not fit in with
three stars), the size of the objects, or the thickness of the lines
outlining the objects. The participant is given feedback (“correct”
or “incorrect”) after each response, and the test-administration
program automatically changes the exclusion rule after 10 consec-
utively correct responses (without informing the participant). The
participant must then use the feedback to determine what the new
exclusion rule is, and after 10 consecutively correct responses, the
rule is changed again. The test is scored based on demonstrated
learning (proportion of correct responses multiplied by the number
of learned rules; 1 is added to accommodate participants who were
unable to discover any rule).

The Penn Continuous Performance Test (PCPT) measures vig-
ilance and visual attention (ATT) independent of working memory
or perceptual factors. Vertical and horizontal lines in 7-segment
displays appear on the screen (at a rate of one second each), and
the participant must press the spacebar when the lines are config-
ured as complete numbers (first half of task) or complete letters
(second half of task). Each half lasts 1.5 minutes, and during each
1-s response window, the stimulus is presented for only 300
milliseconds (leaving 700 milliseconds of blank screen).

The Penn Letter N-Back Test measures working memory (WM),
the ability to keep and refresh goal-related information. Partici-
pants attend to a continual series of letters that flash on the screen

Table 1
Domain-Specific Scales of the Computerized Neurocognitive Battery, by
Neurobehavioral Function

Neurobehavioral
function Domain Test

Mental Flexibility (ABF) Penn Conditional Exclusion Test (PCET)
Executive Control Attention (ATT) Penn Continuous Performance Test (PCPT)

Working Memory (WM) Letter N-Back (LNB) task
Verbal Memory (VME) Penn Word Memory task (PWMT)

Episodic Memory Face Memory (FME) Penn Face Memory task (PFMT)
Spatial Memory (SME) Visual Object Learning Test (VOLT)
Language Reasoning (LAN) Penn Verbal Reasoning Test (PVRT)

Complex Cognition Nonverbal Reasoning (NVR) Penn Matrix Reasoning Test (PMRT)
Spatial Ability (SPA) Penn Line Orientation Test (PLOT)
Emotion Identification (EMI) Penn Emotion Identification Test (PEIT)

Social Cognition Emotion Differentiation (EMD) Penn Emotion Differentiation Test (PEDT)
Age Differentiation (AGD) Penn Age Differentiation Test (PADT)
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(one at a time) and press the spacebar according to three different
rules (called the 0-back, 1-back, and 2-back). During the 0-back
condition, the participant must simply respond to a currently
present target (“X”). During the 1-back condition, he or she must
press the spacebar when the letter on the screen is the same as the
previous letter. During the 2-back condition, he or she must press
the spacebar when the letter on the screen is the same as the letter
before the previous letter (i.e., 2 letters back). In all trials, the
interstimulus interval (ISI) is 2.5 seconds, and the stimuli (letters)
themselves are presented for 0.5 seconds each. The participant
practices all three principles before testing.

Episodic memory. The Penn Word Memory Test (PWMT)
measures episodic memory for verbal material (VMEM). In the
first part of this test, participants are shown 20 words (for one
second each) that they will be asked to identify later. During the
recognition phase, participants are shown a series (one at a time)
of 40 words, 20 of which are the stimuli they were asked to
memorize, and the other 20 are distractors (matched for length,
imageability, and concreteness). For each word, the participant
must decide whether he or she has seen the word in the memori-
zation phase on a four-choice scale (definitely not, probably not,
probably yes, or definitely yes).

The Penn Facial Memory Test (PFMT) measures episodic mem-
ory for faces (FMEM). The task is identical to the Penn Word
Memory Test (above), except that the participant is asked to
memorize faces instead of words. PFMT distractor faces are
matched for age, ethnicity, and gender.

The Visual Object Learning Test (VOLT) measures episodic
memory for shapes (SMEM). The task is nearly identical to the
PWMT and PFMT (above), except that the participant is asked to
memorize 10 Euclidean shapes instead of 20 words or faces.

Complex cognition. The Penn Verbal Reasoning Test
(PVRT) measures language-mediated complex cognition ability
(LAN). The task involves a series of analogy problems patterned
after Educational Testing Service factor-referenced test kit.

The Penn Matrix Reasoning Task (PMRT) measures nonverbal
reasoning ability (NVR) using matrix reasoning problems as used
in the Raven’s Progressive Matrices Test (Raven, 1989, 2000;
Raven, Raven, & Court, 2000) and the Matrix Reasoning subscale
of the WAIS-III (Raven, Raven, & Court, 2003).

The Penn Line Orientation Test (PLOT) measures the complex
reasoning domain of spatial ability (SPA). The participant is
shown two lines on the computer screen that differ in length and
orientation, and must press a button to rotate one of the lines until
its orientation (angle relative to a horizontal line) is the same as the
other (nonrotating) line.

Social cognition. The Penn Emotion Identification Test
(EMI) measures the social cognition domain of emotion identifi-
cation—specifically, the ability to decode and correctly identify
facial expressions of emotion. Participants are shown 40 faces (one
at a time), and must determine whether the emotion expressed by
the actor’s face is happiness, sadness, anger, fear, or none at all.
There are four female four male faces for each emotion (4 � 2 �
5 � 40).

The Penn Emotion Differentiation Test (EMD) measures the
social cognition domain of emotion intensity differentiation—the
ability to decode the intensity of facial expressions of emotion.
Participants are shown two faces at a time, both expressing the

same emotion, and must determine which of the two faces ex-
presses the emotion more intensely. Differential intensity was
obtained by morphing a neutral face to one of four emotions
(happy, sad, anger, fear).

The Penn Age Differentiation Test (AGD) measures the social
cognition domain of the ability to decode the age of a face.
Participants are shown two faces at a time, both neutral, and must
determine which of the two faces is older. The stimuli were
constructed from young faces morphed into old faces, providing
graded levels of difficulty.

Data Analysis

Accuracy and speed values were recorded and entered into a
relational database (Oracle), Raw accuracy and speed values were
transformed to their standard equivalents (z-scores) based on
means and SDs for the entire sample (z-scores for median response
time were multiplied by �1 to produce Speed values where, as for
accuracy, higher scores reflect better performance). Unstandard-
ized descriptive statistics are shown in Table 2. All confirmatory
and exploratory factor analyses were performed with Mplus (Ver-
sion 7; Muthén & Muthén, 2012) using maximum likelihood (ML)
estimation. Because all variables in the present study were contin-
uous z-scores that departed from normality only minimally, the
robust ML estimator (MLR) was not used. The specific scores
being analyzed reflect efficiency, which is the sum of an individ-
ual’s standardized accuracy and speed scores. For example, if an
individual had an accuracy score of 2.50 (very accurate) and a
speed score of �2.50 (very slow), his or her efficiency score
would be 0.

Results

Confirmatory Factor Analysis

Methodologically, the most rigorous step in evaluating the
latent structure of a battery is to estimate a confirmatory model
based on theory. Researchers often base confirmatory analyses

Table 2
Descriptive Statistics for Accuracy and Speed on the 12 Penn
CNB Tests

Accuracy (total correct) Median RT (ms)

Test Median Mean SD Median Mean SD

AGD 43 41.68 7.16 2300 2423 700
FME 31 30.50 4.31 1904 1995 480
EMI 34 33.25 3.40 1882 1950 393
VME 38 36.82 3.34 1444 1510 323
LAN 11 10.72 3.04 5648 6197 2409
EMD 45 43.26 7.04 2911 3012 778
NVR 11 11.96 4.65 5776 6907 3823
SME 16 15.54 2.44 1736 1807 426
WM 18 17.54 2.61 517 548 140
ABF 2.04 1.91 0.73 2227 2409 929
ATT 53 50.99 8.24 483 494 68
SPA 9 9.35 4.37 8808 9381 3369

Note. Median accuracy score for ABF was calculated as [(# of categories
learned) � (% correct responses)]; SD � standard deviation; RT � response
time.
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purely on their own exploratory analyses; however, given that
the CNB was designed explicitly to measure four neurobehav-
ioral domains, we began by testing a theory-based, 4-factor
confirmatory model. Note that in contemporary psychometric
studies, it is unusual to present a confirmatory analysis before
presenting any exploratory analyses. In this case, however, the
hypothesized structure of the battery is based on a very specific
neuropsychological theory. Thus, the goal of the CFA presented
in this section is truly to confirm previously articulated claims
about brain networks related to specific domains of cognitive
performance. That is, the order in which an investigator pres-
ents confirmatory and exploratory analyses is a matter of pref-
erence, and depends on what he or she is trying to “confirm.”
Presenting confirmatory analyses after exploratory analyses
implies that one is trying to confirm the exploratory analyses
themselves; whereas, presenting confirmatory analyses first
implies one is trying to confirm an a priori theory. Here, we
take the latter approach, because the hypothesized CNB struc-
ture is based in neuropsychological theory.

Figure 1 shows the standardized results of the 4-factor con-
firmatory model where factors are free to correlate—a “corre-
lated factors model.” The fit of the model is acceptable by

conventional standards (Hu & Bentler, 1999). The comparative
fit index (CFI) is 0.95, the root mean square error of approxi-
mation (RMSEA) is 0.055 � 0.0002, and the standardized root
mean residual (SRMR) is 0.030. Fit indices for this model and
all subsequent models presented can be found in Table 3.
Additionally, all loadings are moderate or strong and in the
hypothesized direction. The interfactor correlations are also
strong, suggesting an underlying general factor that influences
all responses. Indeed, the high correlation (0.94) between ex-
ecutive functioning and complex cognition suggests that per-
haps only three factors are necessary to explain the correlations
among the CNB scores. This is because 88% (0.942) of exec-
utive functioning is explained by complex cognition (and vice
versa), suggesting they are mostly the same construct. There-
fore, we sought to explore the structure further.

Preparation for Exploratory Analyses:
How Many Factors?

Before exploring the latent structure of a battery, one must
estimate the number of factors necessary to explain a satisfac-
tory amount of the covariance among the items (or tests, in this

Figure 1. Confirmatory correlated-traits model of the CNB Efficiency scores.
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case). In the CFA described above, it was not necessary to use
any empirical methods to determine the number of factors,
because that number (four) was determined by theory.

If the main goal is to explore the data, several numeric
methods exist for estimating the optimal number of factors (see
Hoyle & Duvall, 2004). The method often regarded as most
rigorous is parallel analysis (Horn, 1965; Peres-Neto, Jackson,
& Somers, 2005), which compares the progressive eigenvalues
of the data being analyzed to the eigenvalues of randomly
generated data of the same dimensions. The rationale is that one
should not extract factors beyond the point of explaining vari-
ance that could be explained by random chance. Figure 2 shows
the parallel analysis results (in a scree plot) for the CNB
efficiency data using both principal components and maximum
likelihood factor extraction. As can be appreciated from Figure
2, the first factor explains a relatively large amount of the
covariance, indicating that it might be reasonable to treat all 12
scales as belonging to a single dimension. However, the parallel
analysis suggests that four factors are necessary to account for
a sufficient amount of covariance, which is indicated by the fact
that four factor analysis eigenvalues (triangles) lie above the
lower dotted line.

Another common method used to determine the appropriate
number of factors is to estimate a full range of solutions (e.g.,
one–four factors) and examine them for feasibility and inter-
pretability. In practice, this is probably the most common
method for selecting an exploratory factor solution, because
estimating one additional model (changing only the number of
factors) is easy and fast with current software. Also, it can often
be useful to see multiple solutions; indeed, when evaluating the
structure of a battery, it would probably be unwise to inspect
only one exploratory solution.

Exploratory Factor Analysis of Efficiency Scores

Despite the acceptable fit of the confirmatory model above, it
is possible that exploratory analysis will reveal further subtle-
ties about the structure of the CNB. Table 4 shows the unidi-
mensional, 2-, 3-, and 4-factor exploratory solutions of the CNB
Efficiency scores using an oblique rotation (direct oblimin with
default � � 0). A common way to evaluate factor solutions is to
examine their fit indices, and, with the exception of the unidi-
mensional solution, all solutions in Table 4 are at least border-
ing on acceptable fit. Specifically, the CFI’s of the 1- through
4-factor solutions were 0.86, 0.93, 0.97, and 0.99, respectively;
their RMSEAs were 0.087, 0.070, 0.049, and 0.036, respec-
tively; and their SRMRs were 0.050, 0.033, 0.021, and 0.012,
respectively.

The poor fit of the unidimensional solution suggests that the
parameter estimates should be interpreted with caution. Inspec-
tion of the modification indices (Sorbom, 1989) reveals several
correlated residuals, which is what one expects if there are
additional factors that need to be modeled. Such correlated
residuals indicate that the unidimensional loadings are inflated.
Note that modification indices are normally used in confirma-
tory (not exploratory) factor analysis; however, because the
unidimensional CFA is identical to the unidimensional EFA,
one can obtain modification indices in this special case of EFA.
With the above cautions in mind, however, one should at least
note the two largest and two smallest loadings—specifically,
Emotion Differentiation and Language had the largest (0.71 and
0.64, respectively), and Attention and Working Memory had the
smallest (0.40 and 0.48, respectively).

When two correlated factors are extracted, the Executive
measures (ABF, ATT, and WM) and Complex Cognition (LAN,
NVR, and SPA) tests remain together as Factor 1, and the
Episodic Memory tests (VMEM, FMEM, and SMEM) “break
away” to form their own factor. Notably, without exception, all
three Social Cognition tests (EMI, EMD, and AGD) cross-load
on both factors. Note also that EMD favors the Executive/
ComplexCog factor, whereas EMI prefers the Memory factor.
The 3-factor solution is very similar to the 2-factor solution,
except that the three Social Cognition tests break away to form
their own factor. Note, however, that EMI still prefers the
Memory factor, which is consistent with the finding that mem-
ory impairment in clinical populations is associated with
emotion-recognition deficits (Gur et al., 2006; Hargrave, Mad-
dock, & Stone, 2002; Kohler et al., 2005).

Finally, when four factors are extracted, the solution almost
perfectly matches the theory used to construct the Penn CNB.
The only clear exception is the moderate loading of Abstraction
and Mental Flexibility (ABF) on the Complex Cognition factor
rather than its intended factor (Executive Functioning). It ap-
pears that the Penn Conditional Exclusion Test, which measures
ABF, requires complex cognition in addition to executive con-
trol. It also allows the test taker more time to contemplate the
answer than the CPT (ATT) or Letter-N-Back (WM). A second
notable cross-loading is the 0.28 loading of LAN on Factor 1
(Executive). This finding is consistent with evidence implicat-
ing working memory and attention in reading (Casco, Tressoldi,
& Dellantonio, 1998; Daneman & Carpenter, 1980; Vidyasagar,
2004). Finally, the cross-loading of SMEM on Factor 3 (Com-

Table 3
Fit Indices of Confirmatory and Exploratory Factor Models of
Efficiency, Accuracy, and Speed

Fit indices

Analysis
type Measure Factors CFI RMSEA SRMR

CFA Efficiency 4 .95 .055 .030
EFA Efficiency 1 .86 .087 .050
EFA Efficiency 2 .93 .070 .033
EFA Efficiency 3 .97 .049 .021
EFA Efficiency 4 .99 .036 .012
EFA Accuracy 1 .87 .075 .045
EFA Accuracy 2 .94 .055 .031
EFA Accuracy 3 .98 .034 .016
EFA Accuracy 4 .99 .028 .011
EFA Speed 1 .82 .098 .061
EFA Speed 2 .89 .085 .039
EFA Speed 3 .95 .059 .024
EFA Speed 4 .99 .040 .015
Bifactor CFA Efficiency 4 .96 .054 .029

Note. All models are correlated traits models, except the bifactor CFA
model of Efficiency; EFA � exploratory factor analysis; CFA � confir-
matory factor analysis; CFI � comparative fit index; RMSEA � root
mean-square error of approximation; SRMR � standardized root mean-
square residual.
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plex Cognition) is consistent with the established association
between spatial memory and IQ (Passolunghi & Lanfranchi,
2012; Shang & Gau, 2011). The general conformity of the
4-factor solution to the theory used to design the CNB adds
support to the confirmatory results reported above. Especially
important is the finding that, despite the very large correlation
between the Complex Cognition and Executive Functioning
factors (see Figure 1), they do split into two factors (although
imperfectly) when explored using oblimin rotation.

Exploratory Factor Analysis of Accuracy
and Speed Scores

The analyses reported above combined accuracy and speed, to
form measures of “efficiency.” Such measures are most compara-
ble to previous studies using traditional batteries, where accuracy
and speed are confounded. It could be informative, however, to
examine the factor structure of the CNB accuracy and speed
measures separately to answer two important questions. First, do
the accuracy and speed scores produce factor patterns that are
interpretable enough to warrant separate accuracy and speed scales
capable of predicting outcomes above and beyond the efficiency
scores? This would suggest a need for further investigation. Sec-

ond, do the patterns of accuracy and speed scores match those of
the efficiency scores, that is, the structures shown in Table 4
follow inevitably from combining accuracy and speed, or do they
differ, that is, the structures in Table 4 are the result of speed and
accuracy interacting differently for each test? This issue is related
to the question of how accuracy and speed interact with each other.
For example, accuracy and speed might be negatively correlated,
implying a speed–accuracy trade-off, or their relationship might
depend on the type of test, in which case it would be unlikely that
the structures of speed or accuracy alone will mimic the structure
of efficiency. We do not directly address the question of how
accuracy and speed relate, especially because such an investigation
would require analysis within individuals. However, the results
provide some hints.

Table 5 shows the unidimensional, 2-, 3-, and 4-factor explor-
atory solutions of the CNB Accuracy scores using an oblique
rotation (direct oblimin with default � � 0). As in the case of the
Efficiency scores (see Table 4), one should first examine the fit
indices of the four solutions. With the exception of the unidimen-
sional model, all solutions in Table 5 fit at least moderately well.
Specifically, the CFI’s of the 1- through 4-factor solutions were
0.87, 0.94, 0.98, and 0.99, respectively; their RMSEAs were 0.075,

Figure 2. Parallel analysis scree plots of 12-variable CNB. See the online article for a color version of this figure.
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0.055, 0.034, and 0.028, respectively; and their SRMR’s were
0.045, 0.031, 0.016, and 0.011, respectively. Because of the poor
fit of the unidimensional model, its loadings should be interpreted
with caution as likely to be inflated. Nonetheless, it is worth noting
that the two largest loadings are for Language (0.68) and Nonver-

bal Reasoning (0.65), and the two smallest are for Emotion Iden-
tification (0.31) and Attention (0.34).

When two correlated factors are extracted, the social cognition
variables (EMI, EMD, and AGD) clearly form their own factor
with no cross-loadings over 0.20. The 0.60 correlation between the
factors, however, indicates that a strong general factor (“accu-
racy”) underlies all scale scores. Note also that EMI loads sub-
stantially weaker on F2 than the other two social cognition vari-
ables that define F2.

When three correlated factors are specified, the memory mea-
sures (VMEM, FMEM, and SMEM) form their own factor (F2),
the social cognition scales remain together (F3), and F1 is defined
by the remaining six tests. These remaining six tests defining F1
were designed to measure the neurobehavioral functions of exec-
utive control (ABF, ATT, and WM scales) and complex cognition
(LAN, NVR, and SPA tests). This suggests that, of the four
neurobehavioral functions, the two that are most similar to each
other are executive control and complex cognition. Only two
cross-loadings were �0.20: EMI loads 0.25 on the memory factor
(F2), and SMEM loads 0.28 on the executive/cognition factor (F1).
Finally, note that the correlations among the three factors remain
moderate-to-high, suggesting a general factor underlying all test
scores.

The 4-factor solution shown in Table 4 is less interpretable
than the other three solutions, because F4 does not have any
strong loadings and does not correlate highly with any of the
other factors. It also remains nearly identical to the 3-factor
solution, which suggests that the 3-factor solution is probably
optimal. We evaluated that possibility using post hoc confir-
matory analyses.

We estimated the same four models as above using the CNB Speed
scores. Table 6 shows the unidimensional, 2-, 3-, and 4-factor explor-

Table 4
Unidimensional, 2-, 3-, and 4-Factor Exploratory Solutions of
the CNB Efficiency Scores (With Oblique Rotation)

2-Factor 3-Factor 4-Factor

Test Uni F1 F2 F1 F2 F3 F1 F2 F3 F4

ABF .48 .53 .48 .49
ATT .40 .36 .40 .46
WM .46 .52 .58 .58
VMEM .52 .51 .56 .53
FMEM .57 .80 .75 .70
SMEM .48 .48 .49 .53 .25
LAN .64 .72 .63 .28 .37
NVR .52 .59 .47 .51
SPA .53 .56 .47 .50
EMI .59 .24 .43 .32 .29 .28 .37
EMD .71 .52 .25 .71 .79
AGD .59 .30 .34 .69 .66

Factor correlations (phi matrices)
F1 F2 F1 F2 F3 F1 F2 F3 F4

F1 — — —
F2 .61 — .51 — .36 —
F3 .61 .58 — .55 .42 —
F4 .44 .57 .60 —

Note. Uni � unidimensional; F � factor; rotation � oblimin; loadings �
.20 removed.

Table 5
Unidimensional, 2-, 3-, and 4-Factor Exploratory Solutions of
The CNB Accuracy Scores (With Oblique Rotation)

2-Factor 3-Factor 4-Factor

Test Uni F1 F2 F1 F2 F3 F1 F2 F3 F4

ABF .45 .48 .47 .50
ATT .34 .37 .34 .39
WM .51 .56 .50 .53
VMEM .38 .36 .45 .48
FMEM .50 .31 .23 .65 .58
SMEM .45 .47 .28 .37 .53 �.21
LAN .68 .68 .66 .70
NVR .65 .67 .71 .64
SPA .60 .61 .60 .51
EMI .31 .25 .24 .21 .27
EMD .59 .64 .66 .64
AGD .52 .78 .74 .77

Factor correlations (phi matrices)
F1 F2 F1 F2 F3 F1 F2 F3 F4

F1 — — —
F2 .63 — .58 — .61 —
F3 .59 .51 — .58 .49 —
F4 �.12 .02 .08 —

Note. Uni � unidimensional; F � factor; rotation � oblimin; loadings �
.20 removed.

Table 6
Unidimensional, 2-, 3-, and 4-Factor Exploratory Solutions of
The CNB Speed Scores (With Oblique Rotation)

2-Factor 3-Factor 4-Factor

Test Uni F1 F2 F1 F2 F3 F1 F2 F3 F4

ABF .47 .47 .41 .41
ATT .30 .61 .59 .82
WM .26 .54 .57 .49
VMEM .67 .56 .22 .74 .77
FMEM .71 .68 .77 .68
SMEM .65 .66 .66 .69 �.27
LAN .50 .44 .20 .46 .48 .25
NVR .33 .43 .47 .46
SPA .53 .55 .49 .49
EMI .64 .54 .21 .22 .28 .32 .26 .37 .33
EMD .68 .71 .79 .78
AGD .68 .75 .65 .66
MOT .25 .39 .35 .26

Factor correlations (phi matrices)
F1 F2 F1 F2 F3 F1 F2 F3 F4

F1 — — —
F2 .38 — .32 — .33 —
F3 .27 .69 — .28 .66 —
F4 .18 .07 .05 —

Note. Uni � unidimensional; F � factor; rotation � oblimin; loadings �
.20 removed.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

241CNB PSYCHOMETRICS



atory solutions of the CNB Speed scores using direct oblimin rotation
with default � � 0. As in the case of the Efficiency and Accuracy
scores, the unidimensional model (CFI � 0.82; RMSEA � 0.098;
SRMR � 0.061) is insufficient to explain the relationships among the
Speed scores, and its loadings should therefore be interpreted with
caution. It is noteworthy, however, that the highest and lowest load-
ings in the unidimensional Speed model do not come close to match-
ing those in the Accuracy model. Whereas LAN and NVR were the
best indicators of how accurate participants would be overall, FMEM,
EMD, and AGD were the best indicators of how fast they would be
(loadings � 0.71, 0.68, and 0.68, respectively). Further, whereas ATT
and EMI were the worst indicators of how accurate participants would
be overall, WM and NVR were the worst indicators of how fast they
would be (loadings � 0.26 and 0.33, respectively).

When two Speed factors are extracted, the fit (CFI � 0.89;
RMSEA � 0.085; SRMR � 0.039) begins to approach acceptable
levels (using liberal criteria). It also makes intuitive sense: the
tasks requiring constant vigilance (ATT, WM, and MOT) form
their own factor, while all other tasks remain together. Note also
that the correlation between the two speed factors (0.38) is much
lower than when two accuracy factors are extracted (0.63; see
Table 5), indicating that the two speed-related processes are rela-
tively separate.

When three Speed factors are extracted, the fit (CFI � 0.95;
RMSEA � 0.059; SRMR � 0.024) becomes acceptable by typical
standards. The structure remains mostly the same as in the 2-factor
solution, except that the three Memory tasks break away from the
non-high-vigilance tasks to form their own factor. This could
indicate that the speed with which participants are willing to
commit to a memory-related response involves a process that is
somewhat unique from the process involved in committing to other
low-vigilance tasks (such as Emotion Differentiation). Note, how-
ever, that Factors 2 and 3 are highly correlated (0.69), indicating
that, the difference is not substantial.

Finally, the 4-factor solution in Table 6 has the same combina-
tion of excellent fit yet poor interpretability as the 4-factor model
of Accuracy (see Table 5). That is, despite the excellent fit of the
model (CFI � 0.99; RMSEA � 0.040; SRMR � 0.015), the fourth
factor contributes very little: it is weak (max loading � 0.33) and
is not correlated to the other three factors (max intercorrelation �
0.18). Thus, interpretation of the 4-factor solution is probably not
worthwhile beyond pointing out that the three factors from the
3-factor solution remain strong in the 4-factor solution.

Post Hoc Confirmatory Bifactor Analysis

We began our investigation of the CNB structure with a theory-
based confirmatory model of Efficiency scores (see Figure 1) in
which the four neurobehavioral domain factors were allowed to
correlate. Such a model is appropriate for testing the theoretical
basis of the battery, but if one wishes to use the measurement
model within a larger structural equation model—for example, a
model in which the latent CNB factors predict an external out-
come—the correlations among the factors can become problem-
atic. Thus, in an effort to provide future investigators with a
confirmatory model that does not come with the drawback of
interfactor correlations, we sought a model that controls for these
correlations, allowing the subfactors to be orthogonal. This can be

accomplished by modeling a general (overall) factor along with the
neurobehavioral function subfactors.

A convenient way to model a general factor and the individual
neurobehavioral function factors is to use a bifactor model (Hol-
zinger & Swineford, 1937; also see Reise, 2012; Reise, Moore, &
Haviland, 2010). In a typical bifactor model, each variable (in this
case, test score) loads on two factors, one general and one specific.
All factors are orthogonal, such that the specific factors (in this
case, neurobehavioral domains) explain only the covariance not
explained by the general factor. Likewise, the general factor (over-
all performance) explains the covariance among all 12 test scores
independent from the covariance explained by the specific neu-
robehavioral domains. That the specific factors are orthogonal
after controlling for the general factor is a key strength of the
bifactor model, because it allows one to test the relationships
between the general factors and important external variables (e.g.,
gray matter density of a specific brain region of interest) without
the “contamination” caused by general performance. Obtaining
such an independent measure of a specific type of neurocognition
is crucial in testing the validity of a battery.

The exploratory analyses of Efficiency scores indicated that one
test (ABF) does not load on the factor for which it was intended
(Executive Functioning), but rather loads with the three Complex
Cognition tests. Given this discovery, we can build a better-fitting
confirmatory model (post hoc) that we can later use to test the
structural validity of the CNB. Such an approach might seem
puzzling, given the good fit of the model in Figure 1, in which
ABF loads on Executive Functioning, as theoretically intended.
One might ask, why not keep the assignment of tests to neurobe-
havioral functions the same in the bifactor model as they were in
the original correlated-traits model? This is a legitimate question,
and if the exploratory analysis (see Table 4) left any doubt as to
where ABF should load, the best approach would probably be to
assign tests to neurobehavioral functions as indicated in Figure 1.
However, the exploratory analyses unambiguously indicate that
ABF should load on Complex Cognition. Indeed, when a bifactor
model is specified in which ABF loads on Executive Functioning,
Mplus encounters computational problems that can be fixed only
by placing constraints on the model.

Figure 3 shows the 4-factor bifactor model of the CNB Effi-
ciency scores. The fit is acceptable (CFI � 0.96; RMSEA �
0.054 � 0.002; SRMR � 0.029), and comparisons of the infor-
mation criteria to those of the correlated traits model (see Figure 1)
favor the bifactor model. Specifically, the Akaike Information
Criterion for the correlated traits and bifactor models are 362928
and 362745, respectively, and the Bayesian Information Criteria
are 363228 and 363080, respectively.

The overall conclusions to be drawn from these results are very
similar to those suggested by the 4-factor correlated traits model.
Specifically, a strong general factor (Efficiency or Performance)
explains most of the covariance among all 12 scales, and the
covariance not explained by that factor is explained by four neu-
robehavioral function factors. Here, however, the Abstraction and
Mental Flexibility test (ABF) is now loading on the Complex
Cognition factor rather than the Executive Control factor. Also,
note that because an orthogonal factor cannot be identified with
only two indicators, the loadings of Attention and Working Mem-
ory on the Executive Control factor had to be constrained to
equality.
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The bifactor model provides some unique insights into the CNB
structure. First, Social Cognition factor in Figure 1 is dominated by
EMD (loading � 0.79), whereas in the bifactor model (see Figure
3) it is dominated by AGD (loading � 0.50). This is because much
of the variance explained by EMD in the correlated-traits model
shifted to the general factor in the bifactor model, suggesting it is
a strong indicator of the overall trait measured by the CNB
(cognitive performance). A second insight provided by the bifactor
model pertains to the general factor itself—indeed, the general
factor loadings are excellent indicators of which tests are the “best
overall.” Using this standard, Figure 3 suggests that the language
reasoning and emotion differentiation scores are the best measures
of general performance, followed closely by Emotion Identifica-
tion. The worst indicator of general performance is Attention.

Finally, an important strength of factor modeling (especially
bifactor modeling) is that it allows for informed calculation of
subscale scores. Rather than relying exclusively on theory to create
subscales, one can use the information gathered from factor anal-
ysis to, a) determine which items (or tests) should compose a
score, and b) weight the items such that their relative contributions
to the score variance appropriately reflect their correlations with
the theoretical factor itself. The bifactor model is especially useful
for calculating subscale scores, because its factors are orthogonal,
that is, an investigator could use them simultaneously in a predic-
tive model (such as regression). The problem, however, is that

factor scores must be well-determined in order to acquire the
properties (e.g., orthogonality) of the factors themselves (see
Grice, 2001), which is why indices of factor score determinacy are
important.

The most common way to measure the determinacy of a factor
score is to calculate the correlation (	) between that score and the
theoretical factor used to calculate it. (See Grice, 2001, for an
explanation of why this correlation is not 1.00.) What is considered
an “acceptable” value of 	 is subjective, but Gorsuch (1983, p.
260) recommends 0.80 as the minimum cutoff. By this standard,
the general Efficiency bifactor score (calculated from the model in
Figure 3) is usable (	 � 0.89), but the Complex Cognition,
Executive, Social, and Memory subscales are not (	 � 0.54, 0.55,
0.62, 0.63, respectively). We therefore recommend that if an
investigator wishes to use one overall score for the NB, he or she
should use the general factor from the bifactor model, but if he or
she wishes to calculate subscales, the correlated-traits model is
preferable.

Discussion

Traditional neuropsychological tests are not feasible in the con-
text of large-scale genomic, epidemiologic, and treatment studies
in basic and clinical neuroscience where massive data are collected
electronically and entered into common databases for integration.

Figure 3. Confirmatory bifactor model of the CNB Efficiency scores.
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Designers of such studies, even if they care deeply about measur-
ing neuropsychological constructs, would not be able to contem-
plate the inclusion of any nonelectronic component, let alone
testing that takes place over hours and requires experts for scoring
and interpretation. Thus, while obviously behavior is the product
of brain function, and arguably the ultimate target of clinical
neuroscience, there is a risk that neuropsychology will be left out
of the genomic revolution that is now sweeping medical research.
The web-based CNB, on the other hand, fits well in such studies
because it is brief, electronic, can be administered across platforms
on any web-enabled device, requires minimal training for admin-
istration, scores results “on the fly” and can feed data directly into
an electronic data repository. Furthermore, unlike traditional neu-
ropsychological tests where only the summary scores can be
included in a database, computerized tests can be evaluated for
quality assurance after acquisition and probed for item-wise effects
on either accuracy or speed. These features have resulted in rapid
and wide adoption of the CNB in large-scale population-based and
clinical studies as well as military research (Aliyu et al., 2006;
Almasy et al., 2008; Grant et al., 2012; Greenwood et al., 2007,
2011; Gur et al., 2007, 2012; Thomas et al., 2013).

Despite the widespread use of the CNB, its latent structure had
not been thoroughly examined. The results of the present large-
scale study support the theoretical approach to the CNB design,
and offer some insights into uses and interpretations of CNB
scores. The rationale used to develop the CNB is strongly sup-
ported, with two possible exceptions. Specifically, one of the tests
(the Penn Conditional Exclusion Test) appears to be a better
measure of complex cognition than of what it was intended to
measure, executive functioning. Furthermore, two of the four
neurobehavioral domains thought to compose overall cognitive
performance are highly correlated and might not reflect separate
abilities. This latter point might lead one to question whether a
4-factor model is necessary over a 3-factor model—that is, one can
reject the unidimensional model based on poor fit, but the accept-
able fit of the 3-factor model necessitates some further explanation
as to why it is not preferred over the 4-factor solution. Overall, the
exceptions were neither surprising nor indicative of poor measure-
ment. They may not necessitate post hoc theory adjustment, but
instead lead to practical considerations, especially with regard to
scoring subscales. In our case, abstraction and mental flexibility
were hypothesized to tap the functioning of frontal lobe systems,
and hence we expected performance to correlate with the other
tests of executive functioning. However, the complexity of the test
seems to require greater amount of complex reasoning than exec-
utive abilities. Perhaps easier abstraction and mental flexibility
tests would be better at isolating the executive aspects of this
domain.

The high correlation between the Executive Control and Com-
plex Cognition factors (see Figure 1) indicates that a large portion
(about 85%) of the variance in one can be predicted from the other.
From a measurement perspective, this means there is no good
reason to treat them as two separate factors. From a neuropsycho-
logical perspective, however, there is reason to expect Executive
Control and Complex Cognition to be correlated because it is
difficult to solve a complex problem without applying executive
functioning and some executive functions require complex reason-
ing. The high factor intercorrelation may also relate to an overlap

in frontoparietal brain systems needed to perform these tasks
(Roalf, Ruparel et al., 2013).

The main practical conclusion is that an investigator wishing to
calculate subscale scores for each domain of the CNB (rather than
one global score) should combine the Executive Control and
Complex Cognition domains. That is, even though the exploratory
analysis (of efficiency scores) suggests there truly are two separate
executive functioning and complex cognition factors, they are so
highly correlated in the confirmatory model (see Figure 1) that
their two subscale scores would likely correlate to the point of
redundancy. Regardless of whether the Executive Control and
Complex Cognition domains are truly separate in terms of neural
systems (as suggested by current neuropsychological theory), they
should not be treated separately when calculating scores unless
there is a hypothesis that one and not the other is correlated with
a specific measure of brain function.

There are two important exceptions to the above point. First,
even though general psychometric practice suggests that two
highly correlated latent variables should not be treated separately,
exceptions to the phenomenon—for example, a person who scores
very high on Executive Control but very low on Complex Cogni-
tion—can be highly informative. A useful example is height and
weight, which are highly correlated and yet not redundant because
a discrepancy between them is an important index of an abnor-
mality. Similarly, cerebral blood flow is highly correlated with
metabolism (Paulson, Strandgaard, & Edvinsson, 1990), but dis-
turbances in this autoregulation are important indicators of brain
dysfunction (Duffy, Howse, & Plum, 1975; Chapman, Meldrum,
& Siesjö, 1977). Therefore, despite the high correlation between
them, one can gain valuable information by measuring both.

The second argument in favor of creating subscales involves the
bifactor model. One could justifiably separate the battery into four
orthogonal factors if and only if the model is an appropriate
bifactor model (see Figure 3). Even in that case, however, one
could not use the bifactor model to calculate scores (due to factor
score indeterminacy; see Grice, 2001). Instead, one would have to
put the bifactor measurement model within the context of a struc-
tural equation model, assuring that the specific factors within the
bifactor remain truly orthogonal. Further, given the correlations
among the factors and the ratio of first to second eigenvalues, the
CNB can be thought of as measuring one global trait (perhaps
general intelligence, also known as “g”). Again, however, if it is
absolutely imperative that a researcher obtain four orthogonal
latent variables from the CNB, that can be accomplished using a
bifactor model with SEM.

Finally, if an investigator does want to calculate subscale scores,
he or she should use the correlated-traits model (see Figure 1)
rather than the bifactor model. Recall that scores calculated using
the bifactor model are too poorly determined to be used as valid
measures of the factors they represent. The correlated-traits model,
however, produces well-determined factors: 	 for Complex Rea-
soning, Executive, Social, and Memory are 0.89, 0.87, 0.90, and
0.87, respectively, which are beyond the recommended cutoff of
0.80 (Gorsuch, 1983). The drawback of using the correlated-traits
scores is that they are correlated, and will therefore introduce
nuisance collinearity when used simultaneously in a predictive
model (such as regression). Thus, investigators wishing to use
CNB performance to predict outcomes (or to be predicted by other
external variables) face the following choices:
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1. Use the bifactor model (which comprises orthogonal subfac-
tors and a general factor) within the context of a larger SEM
model, rather than calculating scores to be used in that model.

2. Use the correlated-traits model to calculate scores, and use
those scores in a separate predictive model, with the understanding
that the scores will not be orthogonal.

Both options come with specific advantages and disadvantages
discussed above. A worthwhile note of caution, also, is that cal-
culation of factor scores is a very complex topic with multiple
caveats. Because we present confirmatory models here, we assume
scores will be calculated using the factor loadings as regression
coefficients; however, this is only one of many methods, and
readers are directed to Grice (2001) for review.

Future Directions

The most important step in evaluating the psychometric prop-
erties of the CNB is to establish its validity. The excellent struc-
tural validity demonstrated here is important—indeed, it is neces-
sary, because test scores cannot be valid unless they are reliable—
but it is perhaps even more important to demonstrate that the CNB
measures what it’s supposed to measure. By “validity,” in this case
we mean true validity (see Borsboom, 2005)—that is, an instru-
ment is valid if and only if it measures what it is supposed to
measure.

Often, the validity of an instrument is assessed by correlating its
scores with several criteria (external variables), with the hope that
it predicts the behaviors/outcomes it was designed to predict.
Neurobehavioral measures like the CNB, however, are designed to
probe neurobiological processes. Thus, a core strength of the CNB
is that it was built with the aim of measuring the integrity of
specific brain systems. Therefore, its true validity can be directly
tested with functional neuroimaging (see Roalf, Ruparel et al.,
2013).

Another convenient development in methodology that will help
with the exploration of validity is the recent adoption by many
researchers of the bifactor model itself (See Reise, 2012). A
strength of the bifactor model that was not exploited here is that it
can be used within a structural equation model to test the relation-
ships among tests and neurobehavioral functions independent of
the general factor (Efficiency in this case; see Chen, West, &
Sousa, 2006, for an example using quality-of-life variables).
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